Paul Wilson & Bret Bennington vs Arnie Gundersen & Heidi Hutner on Nuclear Sustainability

On Nov 20, 2014, Hofstra University hosted its annual Pride and Purpose Debate. This year’s proposition was the following – “Should nuclear energy be expanded to help create a more sustainable future?”

The debate included the following panelists:

For – J Bret Bennington, professor of geology, Department of Geology, Environment and Sustainability at Hofstra University.
Against – Arnie Gundersen, a member of the Board of Directors for Fairewinds Energy Education.
Against – Heidi Hutner, director of sustainability studies and associate professor of sustainability and english at Stony Brook University.
For – Paul Wilson, spokesperson for the American Nuclear Society and professor of nuclear engineering, Department of Engineering Physics and faculty director of the advanced computing initiative at University of Wisconsin-Madison

There are several Gundersen whoppers including a claim that solar power in New York City costs 4 cents per kilowatt hour and a statement that off-shore wind will meaningfully contribute to powering the entire state of New York. He also stated that Arjun Makhijani has doubled down on his claim that it is possible to have a carbon-free, nuclear-free power system by moving his transition completion target date back from 2050 to 2035.

At the very end, Gundersen explains why he soured on the nuclear industry in 1990, 19 years after he earned his MS in Nuclear Engineering from Rensselaer Polytechnic Institute.

There’s nothing like carrying a personal grudge for nearly a quarter of a century against an industry made up of more than 100,000 people based on a conflict with an employer.

I’ve admired Paul Wilson (@gonuke) for many years. He is an extremely knowledgable teacher and an effective public speaker. Gundersen had no answers when Paul asked how he could consider off-shore wind to be a “distributed power source” or how many zeros were behind the number of wind turbines and solar panels that needed to be installed each week to match his sides claim that making a significant dent in CO2 emissions with nuclear would require completing one plant every week somewhere around the world from now until 2050.

There was no vote taken at the end of this debate, but there is little doubt who provided the most effective and thought provoking points for his side of the proposition.

Shaping public perceptions of radiation risk

Note: The below is part of a longer work in progress. Comments and corrections are greatly appreciated.

On Monday, November 17, the US House of Representatives passed H.R. 5544, the Low Dose Radiation Research Act, which called for the National Academies to “conduct a study assessing the current status and development of a long-term strategy for low dose radiation research.”

Coincidentally that was the same day that the National Academy of Sciences hosted a publicly accessible, all day meeting to determine if there had been enough new developments in radiation health effects research to justify the formation of a new BEIR (Biological Effects of Ionizing Radiation) committee. If formed, that would be BEIR VIII, the latest in a series of committees performing a survey of available research on the health effects of atomic (now ionizing) radiation.

I had the pleasure of attending the meeting, which was held in the ornate NAS building on Constitution Avenue in Washington, DC. There were about 20 presenters talking about various aspects of the scientific and political considerations associated with the decision to form BEIR VIII. Several of the presenters had performed experimental research under the currently moribund Department of Energy’s Low Dose radiation research program.

That intriguing program was using modern genetics techniques to learn a great deal about the dynamic nature of DNA in organisms and about the ways that living tissues isolate and repair recurring damage that comes as a result of metabolic processes, heat, chemicals and ionizing radiation. It was defunded gradually beginning in 2009 and completely by 2011, with the money making its way to solar and wind energy research as the Office of Science shifted its priorities under a flat top line budget.

The agenda allocated a considerable amount of time for public comments. There were a couple of members of the audience interested in the science falsifying the “no safe dose” model who took advantage of the opportunities to speak, but so did a number of professional antinuclear activists from Maryland, Ohio, New York and Tennessee.

Need Better Results This Time

An epic struggle with important health, safety, cost and energy abundance implications is shaping up with regard to the way that the officially sanctioned science and regulatory bodies treat the risks and benefits associated with using ionizing radiation at low doses and dose rates for medical uses, industrial uses and power production.

We must make sure that this battle for science, hearts and minds is not as asymmetrical as the one fought in the period between 1954-1964. One skirmish in the battle worth winning will be to encourage the passage of the Low Dose Radiation Research Act and the annual appropriations that will enable it to function long into the future.

Here is a brief version of that lengthy prior engagement, where there were huge winners and losers. Losers included truth, general prosperity, peace and the environment. Partial winners included people engaged in the global hydrocarbon economy in finance, exploration, extraction, refinement, transportation, tools, machines and retail distribution. There were also big financial winners in pharmaceuticals, medical devices, oncology, and agriculture.

Rockefeller Funded Survey

During a 1954 Rockefeller Foundation Board of Trustees meeting, several of the trustees asked the President of the National Academy of Sciences (NAS) if his esteemed organization would be willing to review what was known about the biological effects of atomic radiation.

The board did not have to pick up the phone or send a letter to make that request. Detlev Bronk, who was the serving president of the NAS, was already at the table as a full member of the Rockefeller Foundation Board of Trustees. The board agreed that, based on their interpretations of recent media coverage, the public was confused and not properly informed about the risks of radiation exposure and the potential benefits of the Atomic Age.

The tasking given to the NAS was to form a credible committee that would study the science and issue a report “in a form accessible to seriously concerned citizens.”1

Aside: For historical context, that Foundation board meeting took place within months after President Eisenhower made his “Atoms for Peace” speech in December 1953. That speech to the United Nations announced a shift in focus of the Atomic Age from weapons development to more productive applications like electrical power generation and ship propulsion.

At the time the request to the NAS was made, the Rockefeller Foundation had been funding radiation biology-related research for at least 30 years, including the Drosophila mutation experiments that Hermann Muller conducted during the 1920s at the University of Texas. Foundation board members and supported scientists had been following developments in atomic science since the earliest discoveries of radiation and the dense energy stored inside atomic nuclei.

In March 1948, the Tripartite Conferences on radiation protection, a group that included experienced radiation researchers and practitioners from the US, Canada and the UK, had determined that the permissible doses for humans should be reduced from 1 mGy/day (in SI units) to 0.5 mGy/day or 3 mGy/week.

That reduction was not made because of any noted negative health effects, but to provide an additional safety factor.

In between these two extremes there is a level of exposure, — in the neighborhood of 0.1 r/day — which all experience to date show to be safe, but the time of observation of large numbers of people exposed at this rate under controlled conditions, is too short to permit a categorical assertion to this effect.2

End Aside.

Biological Effects of Atomic Radiation

The first NAS Biological Effects of Atomic Radiation committee began its work in April 1955. There were six subcommittees, each of which authored a section of the committee’s report. The report was identified as a preliminary version that was to be followed with a more technically detailed report scheduled to appear within the next couple of years, if desired by responsible government agencies.

Unlike the documents supporting the permissible dose limits that came out of the Tripartite Commission mentioned in the aside above, the NAS BEAR 1 committee report, especially the section from the Genetics Committee, was professionally promoted and received extensive media coverage and public attention.

The NAS held a press conference announcing the release of the report and answering questions in Washington, DC on June 12. Among other media attention, that press conference resulted in no less than six related articles in the June 13, 1956 edition of the New York Times. Several additional articles were published during the following weeks. The selection of pieces included a lengthy article that started at the top of the right hand column of the paper and continued with another 20-25 column inches on page 17.

NYT Above fold June 13 1956

The June 13 edition also included a full text copy of the text of the Genetics Committee report that was specifically written for public consumption. That article filled nearly three pages of the paper, with the opportunity for three separate full span headlines.

Genetics Committee headlines 1

Genetics Committee headlines 2

Genetics Committee headlines 3

The report from the Genetics Committee of the National Academy of Sciences’s first biological effects of radiation committee was pure gold from the point of view of those who wanted to scare people and temper the growing optimism about the virtually unlimited power promised by Atomic Age visionaries like President Eisenhower. Here are the first two paragraphs from the front page article.

A committee of outstanding scientists reported today that atomic radiation, no matter how small the dose, harms not only the person receiving it but also all his descendents (sic).

The report was part of a survey produced by six committees of the National Academy of Sciences, a private nonprofit organization. It was the most comprehensive United States effort to determine how the future of the human race might be affected by the unleashing of nuclear power.

There is no doubt that the Genetics Committee wanted concerned members of the public to get the message that there were no safe doses of radiation. Report authors cleverly reminded readers that they may never see evidence of harm; the genetic damage could be a hidden risk passed on to children and grandchildren that might not show up for several generations into the future. That facet of the “no safe dose” model has made it a difficult myth to refute via experimentation.

This quote is from the last page of the three page reprint of the report in the New York Times.

The basic fact is–and no competent persons doubt this– that radiations produce mutations and that mutations are in general harmful. It is difficult, at the present state of knowledge of genetics to estimate just how much of what kind of harm will appear in each future generation after mutant genes are introduced by radiations. Different geneticists prefer differing ways of describing this situation: But they all come out with the unanimous conclusion that the potential danger is great.

We ought to keep all of our expenditures of radiation as low as possible. Of the upper limit of ten roentgens suggested in recommendation C, we are at present spending about one-third for medical x-rays. We are at present spending less–probably under one roentgen–for weapons testing. We may find it desirable or even almost obligatory that we spend a certain amount on atomic power plants. But we must watch and guard all our expenditures. From the point of view of genetics, they are all bad.

Emphasis added.

With such categorical statements of the unavoidable harm, one might think that the committee members held clear and convincing experimental or epidemiological evidence supporting their conclusions. That is not the case here; the primary evidence for the assertion that all doses of radiation, no matter how small, can cause mutations came from experiments on short-lived insects and annual plants.

Even that evidence was either inconclusive or contradictory in the low dose regions3 of interest to people in nuclear medicine or nuclear energy production.

Irradiation experiments had been performed on mice and rats, but they did not provide any evidence of inheritable mutations. They also did not provide evidence of life shortening effects of with doses below 1 mGy per day.

The genetics committee members acknowledged the scant data upon which they based their recommendations deep in the body of their report, but in the introduction and conclusion–parts that many busy people read first–they expressed great confidence and used assertive language like the “no competent persons doubt this” statement highlighted in the above quote.

Aware of Exaggerations

Dr. Ed Calabrese has even uncovered evidence that the geneticists were aware of the fact that they were exaggerating the risk. Here are quotes from copies of correspondence among committee members that he shared with me.

From Failla to Weaver March 5, 1956 “Every effort should be made to avoid creating the impression that the problem is being presented in an exaggerated way. This is a case in which judicious understatements may be most effective. (For one thing, they cannot be attacked.) Such an impression could be created not only by what is said and how it is said, but also by what is omitted.”

From Demerec to Dobchansky Aug 9, 1957 (after the initial report, but during preparation of the more detailed document) “I, myself, have a hard time keeping a straight face when there is talk about genetic deaths and the tremendous dangers of irradiation. I know that a number of very prominent geneticists, and people whose opinion you value highly, agree with me.”

From Dobchansky to Demerec Aug 13, 1957 “Let us be honest with ourselves — we are both interested in genetics research, and for the sake of it are willing to stretch a point when necessary. But let us not stretch it to the breaking point! Overstatements are sometimes dangerous, since they result in their opposites when they approach the levels of absurdity.

Now, the business of genetic effects of atomic energy has produced a public scare, and a consequent interest in and recognition of the importance of genetics. This is to the good, since it will make some people read up on genetics who would not have done so otherwise, and it may lead to the powers-that-be giving money for genetic research which they would not give otherwise.”

Rockefeller Foundation Influences

Though several of the sixteen committee members accepted the “target theory” that assumed a linear proportionality between radiation dose, DNA damage and inheritable genetic effects, there were some quarrels among the committee members. However, the assigned chairman of the committee, Dr. Warren Weaver, was a skilled facilitator in a strong position to encourage agreement. He was the director of the Division of Natural Sciences for the Rockefeller Foundation from 1932-1959. In that position he was responsible for approving all foundation grants in the areas of molecular biology and genetics.

Weaver was the “powers-that-be” who could provide–or not provide–the research resources the geneticists were interested in obtaining. Several of his committee members were also his grantees, including the influential, Nobel Prize-winning Hermann Muller.

For several years following the issuance of the BEAR 1 report, committee members and various Rockefeller Foundation-supported researchers worked hard to spread the idea that there are no safe doses of radiation. Their effort helped to fertilize the seeds of doubt about nuclear energy that the committee carefully planted. Here’s an example from Nov 15, 1956.

Warning against nuclear power by Rockefeller Foundation

The growing apprehensions contributed to a number of expensive regulatory requirements and set the stage for a focused movement to oppose all efforts to develop nuclear energy. It established a precedent among opponents of radiation-related technologies for listing various effects of intense radiation and implying that those effects occur at even the lowest possible dose.

It was no real surprise to learn that this effort to erect costly, fear-based barriers to the development of atomic electrical power and ship propulsion was entirely funded by the Rockefeller Foundation. Though some observers claim that the Foundation severed ties with the Rockefeller Family in the 1920s, there is historical evidence of sustained family involvement (page 9 of previous link) and interest in the projects that the Foundation chose to fund.

In work I will be publishing in the coming months, I will show the sustained nature of the Rockefeller Foundation’s interest in finding negative health effects of low dose radiation.

Just imagine the difference in our current lives if the Thomas Watson Foundation had been praised for funding a study that asserted the risk of an end to the human race if personal computers were developed without strict exposure limits and multiple layers of safety features preventing the dire risks of carpal tunnel syndrome and eye strain.

Bringing this long and winding post back to the very beginning, the Rockefeller Foundation reduced its funding for radiobiology beginning in the early 1960s and eliminated it completely by 1970. I suspect they were quite pleased with the status quo at that time and were not interested in helping to fund new research that might have provided an earlier, better understanding of the actual health effects of low dose radiation to humans.

1. Rees, Mina, Warren Weaver: A Biographical Memoir 1894-1978, The National Academy of Sciences, p. 506
2. Taylor, Lauriston, The Tripartite Conferences on Radiation Protection, published by the Department of Energy, 1984 (available at downloaded on Nov 20, 2014) pp. 2-2 – 2-3

Additional key excerpts from pages 2-2 – 2-7 are quoted below

When the daily tolerance dose of 0.1 r was adopted, it was thought that this was a conservative value, involving a large factor of safety. Observation of persons occupationally exposed to radiation within this limit has revealed no deleterious effects of any kind attributable to radiation. However, the period of observation is not yet sufficiently long to be sure that exposure at this rate can be continued safely throughout life. The results of large scale experiments with mice and rats (and more limited experiments with other animals) lead to the conclusion that probably the factor of safety involved in the daily tolerance dose of 0.1 r, is not as large as it was though at first. From the genetic point of view a revision downward is indicated because of the larger percentage of the total population now being exposed to radiation.

There are also potent psychological factors that increase the fear of radiation injury beyond justifiable boundaries. These are based mainly on the tragic experience of the early workers with radiation and the effects of the atomic bomb on the Japanese — both of which have been dramatically publicized. All of these factors help to create an atmosphere of mystery around the radiation protection problem and promote skepticism on the part of those not familiar with radiation effects. It may be well, therefore, to point out some pertinent facts.

The detailed mechanism of the action of ionizing radiation on the living cell is not known. This statement, which is often made, leads the uninitiated to think that if “nothing” is known about the “mechanism” very little indeed must be known about the effects of radiation on man. One should bear in mind the sharp distinction between knowing what happens and explaining how it happens. Nobody knows what life is or how it originated, but a great deal is known about the human body and its behavior in health and disease.

To give a homely example, many people can be good drivers without knowing anything about the mechanism of the automobile engine.

There is at present a large body of information about the effects of radiation on living organisms and on man. Every living cell can be damaged and killed by radiation if the dose delivered to it is large enough. Many different kinds of effect have been observed and studied. All such effects can be produced by any type of ionizing radiation provided it reaches the cell or organ in sufficient amount. Thus there is no uniqueness about any one type of ionizing radiation as to the kind of effect it will produce, although there is in some cases a difference in the dose required to produce a certain degree of effect by two different types of radiation. This is important because most of our information has been obtained from work with x-rays and can, therefore, be applied to other types of ionizing radiation by making suitable modifications of dosage. Even when the relative biological effectiveness is not known, one can make a conservative estimate of it to be on the safe side in the protection of personnel.

The advantage of being able to make use of the large body of information obtained with x-rays is very great. This type of radiation has been used extensively for the diagnosis and treatment of disease in man for about 50 years. Many doctors and technicians have been continually exposed to it for years. Some have suffered injuries of various types and degrees, leading to premature death in some instances, and some have shown no ill effects. There is, therefore, a very large background of practical experience based on observations made on human beings. In addition, there is, of course, a vast amount of information derived from experiments on laboratory animals and other living organisms.

As a matter of principle it is sound to avoid all unnecessary exposure to ionizing radiation, because it is desirable not to depart from the natural conditions under which man has developed by evolutionary processes. However, man has always lived in a field of ionizing radiation due to the presence of radioactive material in the earth and to cosmic rays. Whether exposure to this level of radiation is beneficial or deleterious to man (and the race) is a matter of speculation. The obvious fact is that it cannot be avoided and it is, therefor, normal for man to live in this environment. We have then a lower limit of continuous exposure to radiation that is (unavoidably) tolerated by man. There is, on the other hand, a much higher level of exposure that is definitely known to be harmful. In between these two extremes there is a level of exposure, — in the neighborhood of 0.1 r/day — which all experience to date show to be safe, but the time of observation of large numbers of people exposed at this rate under controlled conditions, is too short to permit a categorical assertion to this effect. It should be noted in this connection that lowering the level of exposure by a factor of two (as recommended later in this report) or even ten, does not alter the situation materially, insofar as making a positive statement of absolute safety is concerned. In strict scientific language, the only statement that can be made at the present time about the lifetime exposure of persons to penetrating radiation at a level considerably higher than the background radiation level is that appreciable injury manifestable in the lifetime of the individual is extremely unlikely. Furthermore, on the basis of present knowledge it may be expected that if there should be any injury, it would manifest itself only in the most susceptible individuals. Obviously, the closer the level of exposure approaches background level, the greater the probability that no injury at all will occur.

No matter what effect (e.g. body weight, blood count changes) — observable in the individual — has been studied by animal experiments, statistically significant differences have been obtained only when the daily dose has been considerably greater than 0.1 r. In the range of 0.1 r/day the differences may be plus or minus, which means that, if there is a difference at all, it must be small. Even if a small unfavorable difference were to be established by careful experiments using very large numbers of animals, the question would still remain as to whether the result is applicable to man. There is for one thing a big difference in the normal life span of man and laboratory animals and the problem of chief concern is one in which periodic exposure throughout adult life is involved. A daily dose that produces a given effect in measurable degree in rats may or may not produce the same degree of effect in man. The effect may be more marked ot it may be less marked. Before the results of animal experiments can be extrapolated to man, it is necessary to derive certain generalizations that apply at least to different species of mammals, including animals with a long life span.

Permissible dose

The concept of a tolerance dose involved the assumption that if the dose is lower than a certain value — the threshold dose — no injury results. Since it seems well established that there is no threshold dose for the production of gene mutations by radiation, it follows that strictly speaking there is no such thing as a tolerance dose when all possible effects of radiation on the individual and future generations are included. In connection with the protection problem the expression has been used in a more liberal sense, namely to represent a dose that may be expected to produce only “tolerable” deleterious effects, if they are produced at all. Since it is desirable to avoid this ambiguity the expression “permissible dose” is much to be preferred.

It is now necessary to give this expression a more precise meaning, irrespective of what values of the permissible dose will be recommended in this report. In the first place it is well to state explicitly that the concept of a permissible dose envisages the possibility of radiation injury manifestable during the lifetime of the exposed individual or in subsequent generations. However, the probability of the occurrence of such injuries must be so low that the risk would be readily acceptable to the average normal individual. Permissible dose may then be defined as the dose of ionizing radiation that causes no appreciable bodily injury to the average normal individual at any time during his lifetime. As used here, “appreciable bodily injury” means any bodily injury or effect that the average normal person would regard as being objectionable and/or competent medical authorities would regard as being deleterious to the health and well being of the individual.

Permissible Weekly Dose

Permissible weekly dose is the weekly dose of ionizing radiation that the average normal person may receive for the rest of his life without suffering appreciable bodily injury at any time during his lifetime.

Max permissible dose 1948

3. Calabrese EJ (2011) Muller’s Nobel lecture on dose-response for ionizing radiation: ideology or science? Arch Toxicol 85(12):1495–1498

Dr. Ed Calabrese has produced a series of peer-reviewed papers detailing how the linear, no threshold dose model, which I like to call the “no safe dose” model, was developed over a thirty period of inconclusive and conflicting experiments by geneticists led by Hermann Muller and Curt Stern.

In addition to the one cited above, see

Calabrese EJ (2009) The road to linearity: why linearity at low doses became the basis for carcinogen risk assessment. Arch Toxicol 83:203–225

Calabrese EJ (2012) Muller’s Nobel Prize lecture: when ideology prevailed over science. Toxicol Sci 126(1):1–4
Calabrese EJ (2013) How the US National Academy of Sciences misled the world community on cancer risk assessment: new findings challenge historical foundations of the linear dose response Arch Toxicol 87:20163-2081

Power In New England: Why are Prices Increasing so Rapidly?

On October 20, IBM announced that it was spinning off its chip division by paying GlobalFoundries $1.5 billion. GlobalFoundaries appears to have won the deal with its geographic position of owning fabrication facilities in New York as well as in Germany and Malaysia. The move didn’t surprise many, as there have been rumors that IBM […]

Read more »

Atomic Show #226 – Nuclear tour de France reunion

On Wednesday, November 12, I got together with two friends. The three of us were 60% of a group of five writers and bloggers given the opportunity to visit a sampling of nuclear facilities in France owned and operated by Areva. That experience helped form a strong bond. We missed our other two companions from […]

Read more »

World Nuclear Association discussion on radiation protection

I just received a link to a fascinating podcast from the World Nuclear Association about the risks associated with attempting to protect the public from low doses of radiation. It was posted almost a month ago on October 14, 2014. I apologize for initially missing this important recording and failing to bring it to your […]

Read more »

Atomic Show #225 – ANS Winter Meeting Leadership Perspectives

The American Nuclear Society Winter Meeting is in progress in Anaheim, CA. I was not able to attend the meeting this year, but I was able to arrange to talk to a couple of people who were there. Guests on this episode of the Atomic Show include Gene Grecheck, the Vice President and incoming President […]

Read more »

Atomic Show #224 – Dr. John Boice NCRP

From front page of June 13, 1956 New York Times. Right column headline.

On November 11, 2014, I had the pleasure of speaking with Dr. John Boice, the President of the National Council on Radiation Protection. Dr. Boice has had a long and distinguished career in radiation protection and is currently leading a multi-decade effort known as the Million Worker Study to investigate the evidence that has been […]

Read more »

Who fights energy abundance? Why?

On November 6, 2014, immediately after the midterm election results became available, National Review Online published an article by Kevin D. Williamson titled With Energy, More Is More: An Economic Agenda for the New GOP Majority. Long time readers of Atomic Insights will know that I lean way to the left on the political spectrum […]

Read more »

Open letter to advisory bodies about LNT consequences – revised

Last week I pointed out that Scientists for Accurate Radiation Information (SARI) had submitted a letter to a number of scientific advisory groups requesting that they provide clear guidance to governments on the lack of harm associated with exposure to the residual radioactive materials released from the Fukushima Daiichi accident. That initial post also provided […]

Read more »

Stephen Burns sworn in as NRC commissioner

Stephen Burns, whose nomination to serve as an NRC (Nuclear Regulatory Commission) commissioner was confirmed by the US Senate on September 16, 2014, was sworn in yesterday to become the 35th person to serve as an NRC commissioner. His 5-year term expires on June 30, 2019. The ceremony took place at the NRC’s office building […]

Read more »

Transatomic Power – Anatomy of Next

Dr. Leslie Dewan is a co-founder and the CEO of Transatomic Power, a venture capital-funded start-up based on research conducted at MIT. Along with Mark Massie, the other co-founder, Dewan is exploring a design that uses a molten salt fuel that enables materials currently classified as “nuclear waste” to provide the heat source for a […]

Read more »

Disastrous consequences of LNT model at Fukushima Daiichi

Radiation regulators often acknowledge that their linear, no threshold model overestimates the hazard of radiation below certain dose levels, but, they say, at least it errs in the “conservative” direction. That assumption might give the practitioners comfort and help them believe that they are protecting the general public, but that presumption ignores the real and […]

Read more »