• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
  • Home
  • About
  • Podcast
  • Archives

Atomic Insights

Atomic energy technology, politics, and perceptions from a nuclear energy insider who served as a US nuclear submarine engineer officer

Economics

What makes smaller nuclear power systems so exciting?

September 21, 2021 By Rod Adams 27 Comments

Let me start by dispelling the notion that I think smaller, modular, manufactured nuclear power systems – often called SMRs or micro reactors – are the be all and end all solution to anything, including climate change or energy security.

Though not THE solution, they have the potential to be a crucial, uniquely capable part of a fully-integrated, 0% emission climate-solving grid. 

The best of the breed build on lessons from aircraft manufacturing, submarine construction, electric vehicles, wind & solar and even computers. They are leavened with six decades worth of experience in building, operating and maintaining extra large nuclear systems. They address some of the public relations challenges that have plagued very large reactors.

Some of the system designers are paying close attention to the social science lessons and teachings of groups like “The Good Energy Collective” and designing their systems with customer needs and wants in mind. They often state that they are planning to build reactors that people want to buy. Many of the people or communities interested in buying those reactors are planning to live, work, and play right next to the power system. (Regarding the “play” part of that statement – at least one of the proposals I’ve seen includes directing the waste heat from the power system to a community swimming pool.)

Economy of series production & operation

As former submarine engineer officer who also had the rare opportunity to plan and budget for fleet level nuclear power training, maintenance and construction programs, I have a personal understanding of how economies of series production and standardization work to help keep costs under control and schedules predictable.

It is enlightening to see how much costs fall when you can train a group of operators in a common speciality and send them out to several dozen plants that have identical equipment, spare parts lockers and layouts. It’s also easy to see how maintenance procedures can be written once and used by all and how alterations can be planned, reviewed and implemented. These are just a few of the examples I can list. Rules protecting confidential information prevent me from sharing quantified details. Space prevents me from listing other examples.

It shouldn’t surprise anyone who has made anything that people learn to do things with experience or that doing the same thing repeatedly produces better results the more often the task is done. Those learning curve-related improvements don’t require mass production of thousands or millions of units, they start improving cost and performance with the second unit.

Widely cited literature from thought leaders like Clay Christensen (Innovators Dilemma and other works) show that there is a relation between costs and doubling of cumulative unit production.

The modern renewable industry – wind and solar energy collection systems – demonstrate the utility of replication. Starting from the high cost systems of the early 2000s, the industry took advantage of tax credit and mandates originally designed to help them build markets and achieve scale economies. Their impressive cost reduction performance is more attributable to the economy of learning by doing than it is to technological innovations and new inventions.

Aside: Some of the techniques used for the dramatic cost improvements in wind and especially solar power systems are not actions that we will to use to drive down nuclear costs. The sector has an admirable tradition of paying living wages to people who eagerly accept the responsibilities that come with high quality work and a strong safety culture. It also does not concentrate its manufacturing in countries with lower standards. End Aside.

Of course, cost and schedule improvements that result from experience can be lost, team relationships can be broken and skills can atrophy with a lack of practice. Smaller nuclear power systems will not be immune to these advantages and vulnerabilities. But unlike far larger plants that might be able to serve five, ten, or even fifteen years worth of electricity demand growth with a single unit, smaller systems will need numerous units to be steadily brought into service.

Smaller nuclear systems do not replace extra large power plants

Some challenge the idea that we should add small reactors to our product catalog. They believe that we know how to build large reactors, we have proven that we can operate them with incredible safety records and each one can make a big difference in both energy supply security and CO2 emissions. They claim that smaller reactors make the tasks more difficult and that many of the smaller reactors still need many years of operating experience to catch up with larger units.

SMRs and micro reactors are not intended as replacement products for situations when customers want large or very large power units. They are an addition to the options list for those who want or need their power in smaller quantities or who want to learn how to build and operate nuclear plants in a more gradual fashion.

Some object to those of us who characterize modern nuclear power systems as “advanced” because they claim we have done them all before. While it is true that world nuclear energy history includes projects that envisioned or actually used many of the potential combinations of fuel form, coolant, fuel enrichments, and secondary power systems, it isn’t true that they explored all available technological advances. Today’s designs benefit from innovations and developments that were not available back when some of the original research and testing was done.

The fact that there was a thriving market for electric cars that took off in the 1890s, even before the Model T years, does not make the Tesla any less advanced of a vehicle.

Aside: There are numerous smaller and micro reactors that are already in operation today. Two most recently completed examples are Russia’s Akademil Lomonosov and China’s HTR-PM. But the hundreds of reactors that have propelled naval vessels in a half dozen or more countries for decades also demonstrate many of the principles that make commercial SMR worthy of excitement. Indian PHWRs also have many of the characteristics of modern SMRs, including power rating. End Aside.

Note: The Wright Brothers and Henry Ford built internal combustion engines 120 or more years ago. That does not negate the statements by current automobile manufacturers that their power plants are advanced or modern. Modern electric vehicles may be descended from earlier products built on roughly the same combination of features, but they are still marvels of advanced technology.

Security, Insurance and Non-Proliferation

Some claim that rules aimed at ensuring security and preventing the proliferation of nuclear weapons will make smaller systems unaffordable. They overlook the efforts that are going into the system designs to make security easier to implement, the ways that safeguards are being designed into the systems and the fact that some of the rules are being changed because responsible leaders have recognized that they do not actually improve safety or security. Some of them were implemented with the express purpose of slowing nuclear energy development. The immediacy of climate change is stimulating efforts to identify and alter requirements that serve primarily to undermine nuclear economics.

There are even some who cling to the shibboleth claiming that nuclear energy is somehow subsidized because it has a specially designed group insurance program under the 1957 Price Anderson Act (as amended over the years.) While there are changes needed in that Act, it has never been a subsidy for nuclear energy. The truth is that insuring nuclear power plants has never cost taxpayers a dime in paid damages and the insurers that specialize in providing the required commercial insurance have been hugely profitable by collecting premiums and rarely, if ever, paying a claim.

When opponents point to the long-term costs of the accident at Fukushima Dai-ichi as a reason to believe that nuclear plants are under insured, they have some basis in fact. But most of the nuclear-related cleanup costs associated with that accident have been self imposed by the Japanese national, prefecture and local governments. They set radiation exposure standards that were much more stringent than already conservative international standards. Simply using international standards for radiation doses would have greatly reduced evacuation and relocation costs. Basing those actions on a more complete understanding of radiation and its risks would have virtually eliminated costs of actions taken outside of the plant fences.

Rebuilding an area decimated by an earthquake and tsunami isn’t cheap, but it shouldn’t be attributed to events at an industrial facility that did not harm its neighbors.

Are SMRs a good investment?

The answer is, it depends. As with every industry that is experiencing a new generation of technological innovation, some entrepreneurial teams are progressing well, successfully pitching their vision to investors, building their teams, executing against their milestones, learning from set-backs, adjusting to regulatory and market conditions and keeping their eye on the ball. And others not so much.

At Nucleation Capital, the partner team has a combined total of several decades spent investigating and observing the growing potential for advanced nuclear power production. We know that nuclear energy is clean enough to run inside sealed submarines full of people and safe enough for caring parents to not worry when their children work in close proximity to an operating nuclear power plant. We also know that commercial nuclear plants have amassed an admirable safety and reliability record.

That gives us tremendous hope and confidence that great teams will emerge that can learn from our historical performance, from the navy and otherwise, and that new designs will emerge that competitively meet the challenge to deliver clean energy reliably and cost-effectively with newer implementations of amazing carbon-free technology. But we also recognize that not every design will work as hoped or be well-suited to the market demand that exists. Not every team will have what it takes to be successful in a complex market.

Furthermore, we understand the concerns that many people have about the unknowns regarding new designs and the risks of deploying many more small reactors in an widening array of applications. Just as with the deployment of electric vehicles which cannot succeed on the basis of a car design alone but must be matched with a robust national grid of charging stations, this next generation of nuclear ventures will need to solve for an array of related challenges, including nuclear fuel production, long-term waste handling and storage, spent fuel transportation and reprocessing, among other things.

Fortunately, there are quite a lot of groups and entities that are eager to work on these issues, so that new nuclear systems can help us address climate change, provide humanity with reliable power in a climate-stressed world and also succeed in winning public support. There are valid concerns and there are good ways to address them. We also believe that we will have more success overcoming these concerns if coalitions of people across all spectrums participate in helping to solve them collaboratively. 

We are very pleased to be in a position to talk with founders, get briefed on detailed, often non-public information and discuss with them their development goals and challenges, as well as their experiences dealing with a range of potential funders, regulators, suppliers, strategic partners and potential customers. 

Of course, we cannot be specific about those interactions, but we can express how confident and energized they make us feel for this next generation of reactor developers to broaden the zero-carbon toolset to help reverse the trend of ever increasing CO2 emissions. In the foreseeable future, those new designs will likely contribute to the gargantuan task of reducing the existing emitted inventory of over a trillion tons of greenhouse gases already afflicting our climate, by working in combination with a range of carbon capture and removal technologies.

Our investments do not give us a “conflict of interest.” Rather, we believe they give us a broadening window into the future of decarbonization. We will continue to work with the ventures in our portfolio to help them navigate in the ever-shifting policy, regulatory and investment environments. We will keep our eye on the progress towards commercialization goals and continue to drill down into technological and competitive progress being made, so we can better determine our future investment activity.

We are not policy makers nor government officials. We have “skin in the game.” We will be participating to the extent of working to make sure that the developing advanced nuclear energy industry focuses on meeting customer needs and wants and ensuring that there are cost-effective methods for delivering these over the longer term.

We are also enthused by the opportunity to expand the world of “clean energy” and “climate tech” investing to include nuclear energy. We know that a large portion of the clean, near zero-emission energy produced in the world today comes from long ago investments in nuclear power plants that have been operating reliably for decades. While some look at the hiatus in new builds and believe it indicates that nuclear power is on its way out, we look at the same hiatus as the impetus to improve upon and achieve major strides towards perfecting this extraordinary but still overlooked technology. We will be working our hardest to make sure that we and our investors are able to participate in the growth and success of those ventures which best meet the climate challenge with the right set of products and services.

Filed Under: Advanced Atomic Technologies, Business of atomic energy, Clean Energy, decarbonization, Economics, Investing, New Nuclear, Small Nuclear Power Plants, Smaller reactors

Preliminary lessons available to be learned from Feb 2021 extended cold spell

February 22, 2021 By Rod Adams 34 Comments

A large number of “hot takes” are appearing now that the cold wave that began arriving on Feb 11, 2021 has moved into areas where sub-freezing temperatures in Feb are normal.

If the politically charged nature of the takes could be harnessed, the energy released would be able to keep quite a few homes supplied with power. But, no one has found a way to capture and convert words and hot air into electricity – at least not yet.

That doesn’t stop writers from writing. I plead guilty to the charge of adding to the pile of non-electricity producing words.

It’s a necessary endeavor because so many of the hot takes have been produced by people whose agendas are different from mine.

Though no power source worked perfectly throughout the five day period when the Electricity Reliability Council of Texas (ERCOT) declared the grid condition to be at Emergency Energy Alert 3 (EEA 3), some power sources worked better than others.

While almost every generating source in the system has room for improvement, some have limitations that cap their performance no matter how perfectly they live up to their maximum potential.

The storm revealed severe weaknesses in the current grid resource management model that are worth discussing in an informed, responsible way. Lessons learned discussions are just entering into the early stages, but with an open minded, questioning attitude, it’s not too early to produce some recommended short term actions.

Aside: The title of this piece is intended to indicate recognition that performing “lessons learned” analysis and creating action plans is no guarantee of better future performance if responsible people choose not to take recommended actions. End Aside.

Why did the grid get so stressed?

About a week before the cold weather arrived, it was evident to those who pay close attention to electricity grid supply and management issues that the ERCOT service territory was going to experience an extremely challenging period. Wholesale prices were going to increase by many multiples and would challenge the existing cap of $9,000/MWh (300 times the usual price of $30/MWh).

Every generator in the system would be motivated – incentivized by high prices – to produce as much electricity as it could possibly produce and even then, there probably would not be enough power available to serve every customer as much as they wanted or needed to buy.

Despite the very high prices, almost no help would be supplied from outside the ERCOT system. In order to maintain its fiercely protected independence from the Federal Energy Regulator Commission, ERCOT has kept connections to other US grids at a bare minimum. That ensures that its electricity falls outside of the Constitution’s interstate commerce clause used to justify federal regulation. There are some significant cross-border connections into Mexico.

Few commercial or retail customers would know how much their power was costing at the time they decided to use it, so the system would not receive much help customers making informed choices about timing or limiting their use.

Most of those customers would not even receive a sharply higher bill at the end of the month, because their rates would be adjusted over time to repay the costs of a sustained period of high spot market prices.

That is how the system in place is designed to respond to severe weather or other stressed on the power system. ERCOT has chosen an “energy-only” resource management model where competing generators bid their capability into wholesale electricity markets that are settled and priced every 5 minutes. There is no other source of revenue.

Why choose an “energy-only” resource planning model?

An “energy-only” model keeps wholesale prices low during fair weather. Low prices encourage customers to add devices and equipment. On a larger, longer term scale, it encourages businesses and even residents to migrate to take advantage of having low cost electricity available.

But it doesn’t provide sufficient predictable revenue to encourage investment in durable generating sources or long term, guaranteed delivery fuel supply contracts.

Because all energy sources have different cost structures and different bidding strategies, wholesale prices have wide and rapid swings. By design, the system provides massive returns during periods where demand exceeds supply. This characteristic is supposed to provide all of the necessary incentives for generators to be ready at all times to provide their full capability.

But even with almost a week’s notice that an historic weather event was on its way, there were limited actions available for most generators to prepare to maximize their returns from the coming period of scarcity. If they did not already own reserve fuel tanks or winterized generator packages, it was too late to make arrangements for installation.

Some generators might have been able to get a rush liquid fuel shipment to top off any existing tanks – at an ever increasing price – or they might have been able to make careful inspections and fix obvious system weaknesses. If they discovered some missing insulation or a non functioning heat trace system, they might have had enough time to make repairs.

But most would have had to simply hope for the best and do whatever they could to keep producing power.

Most customers were blissfully unaware of the decisions that had created a system where participants depend on scarcity pricing to make a profit in the business of supplying electricity to the ERCOT market. They didn’t know that many of the generators in the market knew they would only be able to produce limited amounts of power, even with sustained prices at or near the cap of 300 times the usual grid price.

They didn’t know that most generators in the market would be richly rewarded even if they were only able to produce 10, 20, or 50% of their expected capacity during the several day-long deep freeze.

Few frozen wind turbines

The 2021 cold weather event began February 11, 2021 with freezing rain, one of the most impactful kinds of winter precipitation. The nation began paying attention to the incoming cold weather as a result of news reports of icing roads in the Dallas-For Worth area that led to a massive, 130 car pile up on I-35.

That wave of the storm did not actually produce massive quantities of ice; the slick road conditions resulted from less than a tenth of an inch of ice on a road where drivers didn’t exercise sufficient speed restraint.

While freezing rain can accumulate on almost any surface exposed to the weather, including aircraft wings and wind turbine blades, there is no available evidence suggesting that a major portion of Texas’s installed base of >30,000 MW of wind turbine generators experienced icing sufficient to have much impact on their generating ability.

There were some reports that claimed iced or frozen turbines were a significant cause of lost wind power generation, but the real culprit was a relatively common, and predicted winter storm weather pattern that included long periods where high pressure covered a huge land mass. When atmospheric pressure is the same over a large area, there is no driving force that creates wind.

Many people that strongly support the continued rapid development of wind and solar power generating systems declared that their favored power sources performed at or above their day-ahead predictions. They wrote lengthy defenses of wind generation and declared that the historical performance of turbines in areas that regularly experience colder weather than what Texas experienced in Feb 2021 proved that there was nothing inherent about wind that made it especially vulnerable to severe weather.

Midwestern utility company MidAmerican Energy Company has shown that wind energy is highly reliable, even in harsh Iowa conditions. In 2020, 80 percent of the utility’s electricity was generated by renewable energy — the majority of which comes from its 3,300 wind turbines, said Geoff Greenwood, a spokesperson for MidAmerican Energy.

“Wind turbines can handle the cold just fine. Just look at Iowa.” Vox Feb 19, 2021

From the wind and solar advocates’ point of view, better-than-expected performance means that wind and solar should bear little or no responsibility for low generation during an electricity supply shortage.

My experience with this (TX) crisis is that it is hard to explain to reporters/public that wind/solar were not *expected* to provide lots of power (hold the system up) and this is not the same as W+S didnt show up which caused the problem. It is nuanced. Its important though. https://t.co/wkYCMTjvJF

— Dr Christopher T M Clack, PhD (@DrChrisClack) February 22, 2021

Even in a supply crunch severe enough to cause an Emergency Energy Alert stage 3 (EEA-3) – the highest available response level – there is nothing that wind and solar generators can do to make their systems supply power. They must wait until the wind starts blowing or the sun comes up. Low sunlight inevitably affects areas spanning more than half of the planet all the time. Wind is more localized, but there are times when entire continents can be still for many hours several days at a time.

Vast majority of wind and solar advocates are observant enough to know these facts. They even take offense when they are introduced into energy discussions. If challenged about the value of continued strong support and mandates for increasing wind and solar penetration, one of their arguments is that using the wind and the sun to supply energy when it is available allows fossil fuel generating sources to burn less fuel.

In a "normal" winter, those "operational resources" would have been enough to supply peak demand, even if there was zero wind and solar. Wind and solar operating at other times reduce emissions and costs and conserve fuels like gas and coal for when we'll need them most. pic.twitter.com/BCvf3fsgax

— Daniel Cohan (@cohan_ds) February 17, 2021

That would be a reasonable response if the only competitor to wind and solar was fossil fuel. It’s even a reasonable response in systems where large hydroelectric dams are part of the generating mix because it allows the water to remain behind the dam, ready to be used when wind and solar generation falls off.

But opportunistically displacing other sources of power can lead to unproductive consequences like eliminating enough revenue from nuclear plants to make them struggle financially. Right now, there are firm plans in place to close five operating nuclear plants in the US during 2021.

Though some industry leaders have vociferously denied that wind and solar power can be blamed for those closure decisions, the financial evidence is clear. Low grid prices and grid congestion fees in regions where there is abundant wind or solar power available create a “missing money” situation that stresses large steady-running generators that serve base load very well.

There is a correlation and a causation between the location of Exelon’s Byron and Dresden power plants in high wind areas and their financial performance. The same holds true for Diablo Canyon, but the culprit in California is a massive quantity of solar power generation that can create negative pricing during the middle of the day.

Large numbers of gas-fired generators could not produce power

One of the design features of the “energy-only” market model in Texas is that it rewards low capital cost equipment that can burn natural gas. For the past 13 years, natural gas has been abundantly available in many parts of the US, especially in Texas.

The Permian Basin, much of which is under Texas soil, is one of the world’s most prolific oil and gas reservoirs, but it isn’t the only major source of gas in the state. There are other shale formations and there are large gas reservoirs in the Gulf of Mexico off of the Texas shore.

Natural gas, which is more accurately called methane, burns cleanly enough so that a stream of its combustion byproducts can be directly used to spin turbines in a Brayton cycle. Those machines are simple and cheap compared to the huge Rankine (steam) cycle plants that are needed to burn dirtier fuels like coal or lignite. Brayton cycles work well in combination with simple, relatively small steam plants to produce highly efficient Combined Cycle Gas Turbines (CCGT) power plants.

The “energy-only” market structure has helped gas to push most coal and lignite off of the Texas grid, producing significant air pollution reduction and a reduction in greenhouse gas emissions. Using more natural gas in power production has been beneficial to the Texas economy as well, since most of the gas burned in the state is extracted in the state.

But a known challenge related to natural gas is that it is more difficult to store materials that are vapors (gaseous) than it is to store solids or liquids. Gas can be compressed and it can be liquified by cooling it to extremely low temperatures, but both of those processes add costs and consume power.

Without any source of revenues for power generations other than selling electricity, there are no reasons why any generator would spend money to store fuel on site to use in the rare case where there are interruptions in the fuel supply.

Even in fair weather, only a portion of the methane that is extracted gets burned to produce electricity. Some of it gets used as a raw material for petrochemicals and plastics. Another portion gets used in cooking – both residential and commercial – while another is used in industrial process heat and to heat water in both homes and large buildings.

During cold weather events, heating buildings quickly grows and can become larger than all of the other uses combined. But natural gas production rarely increases when the weather gets cold. During the event that lasted from Feb 11-Feb 18 2021, daily gas extraction fell by nearly 20% due to various issues in the system.

The predictable, though not often publicly predicted, effect of a high dependence on natural gas to supply its usual amounts of electricity, to expand its production to make up for low wind and solar production, and to supply building heating systems is a system where some needs are not met.

Under the low cost, just-in-time, fuel supply model that is an inherent result of an “energy-only” market scheme, there is simply not enough fuel in the system to supply all demands all of the time. When the fuel that supplies the majority of the power generators in a system is stressed, all generators that burn that fuel can be affected.

In the lingo I learned as an operating power plant engineer and as a participant in a power plant design project, insufficient gas during a cold weather event is a predictable “common cause failure” for an electricity supply system.

As designed, the market uses pricing signals to balance demands with supply. But those price signals have to be dramatic to change behavior because both supply and demand have a large amount of inertia and cannot be easily changed.

When price signals aren’t sufficient to change behavior fast enough, the only option the grid operator has left is to balance demand with available supply by turning off the power to some customers.

What about the nuclear plants?

At 0537 on Monday, February 15 South Texas Project unit 1 tripped off line. (That link includes far more details about the event than can be fit into this post.) Other than that single event, all 93 of the 96 nuclear plants in the US that were operating before the cold weather event began continued producing as much power as they were asked to produce.

The only nuclear power station that did not produce as much power throughout the event as it possibly could have produced was Arkansas Nuclear One. For part of the week, the regional transmission operator asked the plant operators to supply less than their plant’s design power in order to keep the system in balance.

Here is a quote from an Entergy Arkansas spokesman explaining that period of less than 100% power.

Arkansas Nuclear One’s dual units continue to operate safely and securely throughout the weather event, with essential functions staffed by Entergy’s team members. Both units currently are operating at reduced power at the request of the independent grid operator.

The Midcontinent Independent System Operator is an not-for-profit organization that works to ensure reliable power supplies in part of Canada and 15 U.S. states, including Entergy’s service territory in Arkansas, Louisiana, Mississippi and portions of Texas.

In doing so, MISO often asks generation facilities to change power levels during times of potential grid instability. Entergy’s regional generation facilities are coordinating closely with the grid operator, and power levels at our plants may continue to rise or fall as the dispatcher works to keep transmission functions stable.

Direct message from Entergy Arkansas (@EnteryArk)

Approximately 60 hours later, STP 1 returned to service and increased its output to its maximum capacity. That lengthy shut down exposes one of the reasons why there have been few new nuclear plants built in the US during the past 30 years.

The large, light water nuclear power plants that were selected to be built commercially in the 1960s-1990s work best if run steadily. If they are taken off line for any reason, power restoration can take many hours to several days. While it might be possible to improve that situation for existing reactors, it is best done via a meticulous, methodical, time consuming path.

Under our current construct as refined by many decades of continuous operational improvements, nuclear plant shutdowns and start ups are rare events. They happen less than once per year at each unit.

If the population size for nuclear reactors is restricted to the four units physically located in Texas, the operational score for nuclear during the 5 days of rotating outages turns out to be about 86%, which should be a solid B in most grading systems. (That is calculated on power produced compared to the power that could have been produced if all four units operated perfectly throughout the event.)

But given the widespread nature of cold fronts and the impacts of stresses in the nationwide natural gas delivery system, it might be fair to include the performance of a larger population of nuclear plants. 92 out of 96 operating at or near 100% produces an A in almost every known grading system.

On the scale of producing as much power as expected by grid planners, nuclear did about as well as it was expected to do. It’s not a perfect power source; there are numerous ways for systems to fail to produce at 100% of rated output 100% of the time. But nuclear met or exceeded some pretty high expectations.

It is important for systems planners or people who influence system planning actions to recognize that nuclear plants offer several important features. Among its strengths is its independence from the common cause failures of fuel supply constraints and direct dependence on wind and sun availability.

It is also a clean power source, with life cycle CO2 emissions that rival onshore wind and beat both offshore wind and most solar systems. It produces virtually zero air or water pollution. Its ‘waste’ heat could become a valuable resource if systems were properly designed to use it beneficially.

Were lessons available from the Texas cold weather event of 2011 (Super Freeze) actually learned?

It’s not accurate for people to claim that the freeze of 2021 was a complete surprise or had no precedent in history. Galveston Bay has frozen solid several times in the past 50 years. In 2011, there was a cold weather event that brought temperatures just as cold and just as widespread as those experienced this year, though that event was shorter.

Many of the recommendations from 2011 post event reports were not implemented. The state persisted in pursuing its fierce grid independence. A substantial increase in wind power generation was accompanied by a growing boom in solar energy and major new transmission lines to move their power. Natural gas dependence has increased by double digit portions.

As much as it pains me to admit this, if the nuclear plant construction plans that were announced in 2007-2009 had been pursued, they would not have helped avoid the issues that appeared.

It’s difficult to prove a counterfactual historical point, but it’s easy to point to the only US nuclear project that survived from that brief period of excitement about new nuclear power plant construction. Vogtle units 3 & 4 will not enter service until sometime in the next two years. They were the leader projects from the Nuclear Renaissance and they are still not complete.

The next time we revive the nuclear plant construction industry, we must do a better job. We must achieve better cost and schedule performance and we must make design choices that recognize the importance of flexibility and responsiveness. That might include implementing some of the speedy recovery capabilities that have long been a part of military nuclear power plant design and operations.

If society determines that it is unacceptable to have a power grid that cuts off customers for many hours at a time during a period when being without power can be deadly, it must accept the fact that markets cannot be the decision makers.

Cheapness on a short duration scale – like 5-minute settlement markets – cannot be the sole criteria for selecting power sources.

Filed Under: Economics, Electric Grid, Emergency management, Grid resilience, Nuclear Performance, Unreliables

Atomic Show #289 – All Reactors Large and Small

January 29, 2021 By Rod Adams 16 Comments

Pro-nuclear advocates generally agree that there is a large and growing need for new nuclear power plants to meet energy demands with less impact on the planet and its atmosphere. There is frequent, sometimes passionate discussion about the most appropriate reactor sizes, technologies and specific uses. Atomic Show #289 is a lively discussion among some […]

Filed Under: Atomic politics, Economics, New Nuclear, Podcast

Atomic Show #271 – Improving Nuclear Cost and Schedule Performance

April 15, 2020 By Rod Adams 5 Comments

One of the most persistent arguments against the rapid deployment of nuclear energy is that projects are too expensive and take too long to complete. Based on the performance of the few nuclear plants that have begun construction in the West during this century, it’s hard to disagree. But there is solid evidence from projects […]

Filed Under: Business of atomic energy, Economics, Podcast

Turning nuclear into a fuel dominated business

October 28, 2018 By Rod Adams 66 Comments

Under our current energy paradigm, nuclear power has the reputation of needing enormous up-front capital investments. Once those investments have been made and the plants are complete, the payoff is that they have low recurring fuel costs. Just the opposite is said of simple cycle natural gas fired combustion turbines. They require a small capital […]

Filed Under: Adams Engines, Advanced Atomic Technologies, Business of atomic energy, Economics, Gas Cooled Reactors, Graphite Moderated Reactors, Pebble Bed Reactors, Smaller reactors

Why can’t existing nuclear plants make money in today’s electricity markets?

July 25, 2018 By Rod Adams 42 Comments

What does it mean when nuclear plant owners tell people that their plants are struggling to make money in competitive markets as currently structured? They are attempting to more precisely state what is often misleadingly dismissed by journalists as “nuclear plants cannot compete.” The more commonly used statement gives the impression that nuclear plants produce […]

Filed Under: Alternative energy, Atomic politics, Economics

With immediate and profound changes, U.S. nuclear power can become an unexpected but welcome low carbon wedge

July 9, 2018 By Rod Adams 91 Comments

Researchers from Carnegie Mellon, University of San Diego, and Harvard recently published a useful call to action titled U.S. nuclear power: The vanishing low-carbon wedge. For pro-nuclear observers and debaters, their conclusion may seem quite depressing. It should be a source of profound concern for all who care about climate change that, for entirely predictable […]

Filed Under: Advanced Atomic Technologies, Business of atomic energy, Economics

Atomic fission technology is a terrible candidate for a “do not resuscitate” order. Antinuclear groups MUST not be granted right to put one in place

April 10, 2018 By Rod Adams 50 Comments

I’m going to beg forgiveness and literary license for the following extended, potentially inappropriate, and perhaps too personal metaphor. For several weeks, I’ve been struggling with finding my “voice” in dealing with current events related to the U.S. electricity production system. As part of my healing process, I went on a several day long reading […]

Filed Under: Atomic Advocacy, Economics, Fossil fuel competition

Is America’s vaunted electricity supply system on course for rocks and shoals?

April 2, 2018 By Rod Adams 41 Comments

Late last week, while many observers were focused on a long weekend of religious celebrations with friends and families, there were several announcements made in the slowly developing crisis in the American electricity supply system. Operators of a number of several large power plants with the ability to produce electricity night and day, wind or […]

Filed Under: Economics, Fossil fuel competition, Grid resilience

Logical Basis For Sec. Rick Perry’s Resiliency Pricing Rule.

October 30, 2017 By Rod Adams 18 Comments

The intense conversation Energy Secretary Rick Perry purposely initiated with his Sept. 29 letter to the Federal Energy Regulatory Commission continues to occupy the attention of specialists. The direction was concise: implement pricing rules that protect electricity generators that meet certain requirements from being pushed into early retirement. The marching orders came with an aggressive but […]

Filed Under: Atomic politics, Business of atomic energy, Economics, Politics of Nuclear Energy

FERC Proposal Supporting Coal And Nuclear Prompts Howls From Gas, Wind, Solar, Antinuclear

October 26, 2017 By Rod Adams 15 Comments

If his goal was to stimulate a conversation with a rapid approach to concluding action, Energy Secretary Rick Perry has scored a victory with his recently proposed Grid Resiliency Pricing Rule. During the past couple of weeks, the insular world of energy policy wonks has talked of little else, numerous congressional hearings have been held […]

Filed Under: Atomic politics, Business of atomic energy, Economics

Can Gas Turbines Using Nuclear Fuel Change The Energy Game?

August 31, 2017 By Rod Adams 51 Comments

It’s time to change energy game by adapting the well-proven, flexible and reliable combined cycle to be able to use nuclear fuel. That will match the best available heat conversion system with a low cost, emission-free heat source.

Filed Under: Advanced Atomic Technologies, Army Nuclear Program, Economics, Gas Cooled Reactors, New Nuclear, Small Nuclear Power Plants

  • Go to page 1
  • Go to page 2
  • Go to page 3
  • Interim pages omitted …
  • Go to page 12
  • Go to Next Page »

Primary Sidebar

Categories

Join Rod’s pronuclear network

Join Rod's pronuclear network by completing this form. Let us know what your specific interests are.

Recent Comments

  • Roger Clifton on Atomic Show #297 – Krusty – The Kilopower reactor that worked
  • Chris Aoki on Atomic Show #296 – Julia Pyke, Director of Finance Sizewell C
  • Michael Scarangella on Catching Oklo — a rising star!
  • Gary Nicholls on Atomic Show #297 – Krusty – The Kilopower reactor that worked
  • Jon Grams on Atomic Show #297 – Krusty – The Kilopower reactor that worked

Follow Atomic Insights

The Atomic Show

Atomic Insights

Recent Posts

Atomic Show #297 – Krusty – The Kilopower reactor that worked

Nuclear energy growth prospects and secure uranium supplies

Nucleation Capital’s Earth Day in Atherton

Atomic Show #296 – Julia Pyke, Director of Finance Sizewell C

Solar’s dirty secrets: How solar power hurts people and the planet

  • Home
  • About Atomic Insights
  • Atomic Show
  • Contact
  • Links

Search Atomic Insights

Archives

Copyright © 2022 · Atomic Insights

Terms and Conditions - Privacy Policy