Reminder to DOE and Congress – US has a world beating Fast Flux Test Facility sitting idle in eastern Washington
Note: The below is an updated version of a post first published in March 2017. Since DOE is preparing for its revised FY2019 budget submission and Congress is already holding hearings about DOE priorities, the subject of a fast neutron facility has reentered the advanced nuclear energy conversation.
There is a known gap in fast spectrum testing facilities in the US. Several entities have suggested that the solution to the gap is to create a new project to build a world-class fast spectrum test reactor.
In my opinion, and that of many experts to whom I’ve talked to in the past several years, any project being envisioned today is doomed to be too late to address the near term needs. It’s reasonable to predict that the project will run into enough obstacles and delays that it will never be completed.
That statement should not be cause for despair. It should be motivation to evaluate better alternatives. As a former leader in the world’s nuclear research and development enterprise, the US has certain advantages that cannot be readily replicated.
One of our almost completely forgotten advantages is that we already have a world class, lightly-used Fast Flux Test Facility known as the FFTF. It’s sitting idle, but reasonably well preserved at the Hanford site in the state of Washington.
Some believe the facility was permanently disabled with a series of decisions and actions taken during the Clinton and Bush Administrations. Fortunately, that belief is based more on mythology than reality. The facility can be restored in a much shorter period of time than new project that has not even started the requirements or siting stages yet.
National need for fast spectrum testing reactor
A number of entities in the United States or Canada (TerraPower, ARC, GE Prism, and Oklo) are investing significant sums of corporate or venture capital to pursue an elusive technical achievement. They are designing what they expect will be commercially viable nuclear power systems that achieve substantially greater fuel economy than conventional reactors. Though nuclear fuel is “cheap,” substantially better fuel use provides improved longevity and produces less waste material.
Efforts to achieve fuel economy objectives have reopened a discussion whose historical roots extend back more than 50 years into the middle of the 1960s. Some of the most promising avenues for improved fuel utilization involve the use of reactors that do not use moderators to purposely reduce the energy level of fission neutrons.
Given that there are United States entities that believe there is a need for advanced nuclear technology with fuel consumption characteristics that surpass those available from conventional reactors, those entities need a facility that can provide conditions for the fuel and materials testing required to support design, development and licensing.
Virtually all of the available facilities that can provide the necessary conditions are located in Russia. For obvious reasons, that fact adds an unnecessary level of cost and complication.
Conventional Light Water Reactors (LWR)
Conventional commercial nuclear reactors operate with slow [thermal] neutrons. They use materials like water, heavy water or highly purified graphite to moderate [slow] the high speed, high energy [fast] neutrons that are liberated when uranium or plutonium atoms are broken apart.
Thermal neutrons have a much higher probability of being absorbed and causing fission, thus they can work with fuel that is only slightly enriched to have a little more fissile material than natural uranium. The disadvantage of thermal spectrum reactors is that commercially proven configurations fission only 3-5% of the uranium in the fuel elements.
Thermal reactors obtain most of their heat from the 0.7% of natural uranium that is fissile U-235. Nearly all of the U-238 atoms that make up 99.3% of natural uranium are treated as if they were useless waste materials. In commercial fuel elements, natural uranium has been enriched so that 3-5% of the uranium is fissile U-235.
As the reactor operates, fissile U-235 is consumed. A small portion of the U-238 also fissions when nuclei are hit by neutrons with enough momentum. A portion of the U-238 that is smaller than the amount of consumed U-235 also absorbs a neutron and quickly decays into Pu-239, which is about as fissile as U-235.
In order for a reactor to be able to maintain heat producing operations, it much contain a certain amount of fissile material. Thus fuel elements removed from a core still contain a significant amount of fissile material; it cannot be consumed without separating the actinides from the rest of the material in the used fuel and adding enough fissile material to regain the 3-5% content needed in new fuel rods.
Towards the end of life for the loaded core, about a third of the produced power is coming from Pu-239. As a result, conventional reactors consume 3-5% of the loaded fuel, leaving 95-97% of the potential energy behind as waste if not recycled. To a reasonable level of precision, the process in a thermal reactor produces about as much energy from mined uranium as if the system only consumed U-235.
Inefficient? Yes. Is It A Major Cost Issue? Not Yet.
Many nuclear advocates or nuclear technology observers claim there is no immediate need to spend money to improve fuel cycle efficiency. Uranium is cheaper now in nominal dollars than it was in 1973 ($20-$24/lb versus $40/lb). The market is oversupplied to the point where mines are being closed for economic reasons, not because they have exhausted the known deposits. Storing used fuel [which some people insist on calling “nuclear waste”] is technically simple and not a major cost item, even though it can lead to heated political controversies.
Those objections do not prevent others from pursuing improvements because they seek other measures of effectiveness or have discovered ways to position their technology to compete in unique ways.
One of the many reasons that the U.S. has not reached any long term agreement resulting in a successful and sustained program of final disposal for used fuel is that a significant group of nuclear-knowledgable scientists and engineers are professionally offended by the idea of permanently placing a vast source of potential energy into a location where it is as inaccessible as possible.
We believe that “final” disposal deep underground is an unnecessary barrier. Future generations will be smarter than we have been about making full use of the Earth’s endowment of actinides. They will not thank us for putting valuable material in places where it is difficult to retrieve.
Beyond LWRs
LWR “waste” material is capable of split and releasing just as much energy for each fission as splitting U-235. Uranium-238 can fission either directly with energetic fast neutrons [about 1 MeV of energy] or it can fission after absorbing a neutron, undergoing two beta decays to become Pu-239 and then being split by a second neutron.
In a reactor that has no or little moderation [either zero or a small portion of light materials like graphite or water in the core] neutrons retain high enough energy to either directly fission or to convert U-238 to fissile Pu-239. Doing so improves fuel economy by a factor that might approach 140. With fast neutrons, a fuel resource expected to last for a century with thermal reactors could conceivably last 14,000 years.
One of the primary technological rainbows that might lead to this pot of gold is to use reactors that are cooled by liquid metal, with the common choices being limited to sodium, lead, or a eutectic mixture of sodium and potassium called NaK.
Using liquid metals and fast neutron spectra requires materials and fuels whose characteristics are considerably different from those in conventional reactors. Doing this safely – and within the bounds of regulations – requires adequately testing and computer model validation.
United States Fast Breeder Reactor Program
In the mid 1960s, the U.S. Atomic Energy Commission shifted most of its nuclear technology investment expenditures away from projects that would improve on light water reactors. The general consensus was that those reactors had been commercialized to the point where private industry would invest the resources required for improvements.
In 1965, the Joint Committee on Atomic Energy (JCAE), the President and the AEC determined that the time was right to apply available resources to serious research and development of liquid metal cooled fast breeder reactors. That effort included the recognized need for a large-capacity, highly capable testing reactor.
A group of scientists, technologists, economic boosters and elected officials in the state of Washington joined forces and put together a proposal for a fast neutron test facility. Similar people associated with the Idaho National Reactor Testing station and the closely aligned Argonne National Laboratory in Illinois assumed that their site was the logical location for such a facility. After all, they had already hosted so many experimental, test and demonstration reactors. Their site was the National Reactor Testing Station before it was renamed as the Idaho National Laboratory.
Those loosely aligned individuals and corporate entities did not take into account the well-organized group in Washington. They did not understand the national government’s desire to soften the economic blow that had been dealt to eastern Washington with the winding down of the plutonium production reactors.
They also failed to recognize the importance of Milton Shaw’s personal animosity towards Albert Crewe, then serving as the director of Argonne National Laboratory. Shaw was then serving as the director of AEC-Headquarters’ Division of Reactor Development and Technology; his opinion carried a great deal of weight in the AEC decision process.
(Source: Proving the Principle – A History of the Idaho National Engineering and Environmental Laboratory, 1949-1999 chapter 19)
The reactor that the Atomic Energy Commission designed, sited, built and operated at the Hanford Site in Eastern Washington to provide the proper environment for testing fast reactor fuels and materials operated from 1982-1992. That shutdown happened about 15 years after Presidents Ford and Carter had determined that the US would not pursue liquid metal breeder reactors.
The AEC took from 1967-1982 to move from conception to an operating test facility. Some of the delay was caused by the annual budget battles that questioned the need for the facility after the cancellation of the fast breeder reactor program. The design was reviewed and approved by the Nuclear Regulatory Commission (NRC), though regulation of the facilities construction and operation was retained by DOE.
That facility – the 400 MWth Fast Flux Test Facility (FFTF) – remains the highest capacity, most modern and least used test reactor in the U.S. DOE’s possession. It is still intact with its internals filled with an inert argon gas purge.
Though final environmental impact assessments have been conducted and a decision has been made to entomb the facility, budgets and preparation of detailed engineering plans move slowly at DOE; no destruction has begun yet. There is a pervasive myth floating around the DOE that actions taken during the George W. Bush administration to more completely remove the sodium coolant from the system has made it impossible for the system to be restored.
According to a 2007 detailed study funded by DOE as part of the Global Nuclear Energy Partnership (GNEP) the action taken was to drill a 3/4″ carefully engineered hole in a non pressure barrier. The study determined that adequate recovery from that action would add a little less than $1 M to the $500 M facility restoration cost estimate. (See pages 56-57 of the linked PDF)
What Kind Of Reputation Did The FFTF Earn?
During the 15 years following the 1976-77 turn away from developing fast breeder reactors as a national priority, the FFTF was completed, put through an extensive start-up testing program and used operationally for the next 10 years. Because FFTF’s primary mission of supporting an expansive breeder reactor program had been cancelled before the facility ever started up, its supporters were put into the position of existence justification before they even opened for business. The facility was used for materials testing, medical isotope production, and was proposed for use as a plutonium burner, a source for Pu-238 for space missions and as a prototype liquid metal power reactor.
One of the test series conducted at the FFTF validated the system’s passive safety claims. The unvalidated nature of those claims was a major objection raised by the project’s more vocal opponents, including Arthur Tamplin and Thomas Cochrane, both of the Natural Resources Defense Council (NRDC).
(Source: Moore, T.G. Fast Breeder Reactors Fueling Controversy, Pittsburgh Post Gazette, Aug 3, 1979)
During its operational life, the FFTF demonstrated the value of having been built with a view towards longevity and reliable operation. At times, it could run for many months without reducing power. That is valuable when operating to “burn up” fuel or highly irradiate materials with neutrons.
In 1990, President George H. W. Bush and his Secretary of Energy, James Watkins determined that the FFTF was no longer needed and could be sacrificed in the name of budget cutting. They justified the decision by claiming that the US was no longer pursuing fast reactor technology. Apparently, the staff people who supplied this budget cutting recommendation and justification ignored the Integral Fast Reactor (IFR) project in Idaho, which was then in its 18th year and still going strong.
(Source: Nation’s Most Modern Reactor Scheduled For Closing; DOE Cites Costs, Los Angeles Times Feb 11, 1990, Pg A28)
In 1993, the FFTF was ordered to be placed in standby by President Clinton and Hazel O’Leary, his first Secretary of Energy. On Jan 19, 2001, the last day of the Clinton Administration, Bill Richardson, then serving as the Secretary of Energy, signed the Record of Decision (ROD) on the Final Environmental Impact Statement for closing and decommissioning the facility. In December 2001, President George W. Bush and his Secretary of Energy, Spencer Abraham ordered that the facility be permanently shutdown by completing the sodium removal.
In 2007, as part of the Global Nuclear Energy Partnership, the Department of Energy funded a study to determine if the facility could be economically restored on a usefully short schedule. With a 20% contingency and conservative schedule assumptions, that study indicated that restoration would take about 5-6 years and cost $500 million. The study ended up in a room known to insiders as the abandoned room, a place where all of the GNEP Environmental Impact Statement paperwork accumulated with no consideration given to reviewing the documents and making a final decision.
Mission And Requirements Justification For Fast Test Facility
At the end of the Obama Administration, DOE began identifying the mission need and requirements for a new fast reactor testing facility. Though the documents produced as part of that effort only mention the FFTF in passing, it now appears that the process for meeting user demands for fast neutron testing capability will include evaluating the option of restoring the FFTF.
With a more diverse and less politically vulnerable user base compared to the 1970s vintage fast breeder reactor program, the FFTF should finally get the chance to perform its primary mission for a lengthy period of time.
As the US DOE has found with the Advanced Test Reactor (ATR), a 50 year-old facility initially built to serve a single customer, there is a wide range of potential customers and a sustainable demand for a well run neutron irradiation user facility that might last for numerous decades.
It’s time to move from repeated bipartisan efforts to permanently kill the FFTF to a broad-based effort to recognize value and restore the facility that our parents built and carefully put away in case we might need it.
Supporting advancements in nuclear energy seems to be an area of agreement in a sharply divided Congress. It is an improvement program where there are so many potential benefits that everyone – with the possible exceptions of Bernie Sanders and Ed Markey, two relics who cannot seem to discard their 1960s point of view – in the House and Senate can find reasons to favor supportive legislation.
That is impressive. I hope you will take the trouble of sending this to my senators, Murray and Cantwell. Indeed, to the entire Washington state congressional delegation. Well, don’t leave out our governor, Inslee.
What the heck. Send a copy to King5.
@David
If a random blogger from Florida tried to communicate with Washington senators, the message would be lost or trashed. On the other hand, if a constituent from Washington was to send my article to his or her representatives and senators (or even Governor) they would have to follow their normal protocols and at least respond with a form letter.
Advanced manufacturing technology might make it easier and cheaper to repair the hole with near original material properties. I’m thinking cold spray metal deposition, laser welding laydown, or friction stir welding. There may be others. I saw these being done at the CANM (Center for Advanced Nuclear Manufacturing) in western Pennsylvania at a NIC Conference on Andvanced manufacturing. I asked if they could modify these tech ologies to do them in the field, saying that there woukd be a demand for that. That opened their eyes, but in a positive sense. Who at FFTF should I put them in contact with to look at whether CANM could fix FFTF? Both as a,cist benefit to FFTF and an expansion of capabilities opportunity for CANM. CANM got a NuScale conntract to build the steam generators.
Is there still an interlaboratory or inter departmental rivalry going on at DOE that 8s trying to kill FFTF, rather than a new INL facility? I’m thinking of what happened when Savannah River National Lab tried to volunteer to host 3 SMRs prototypes and INL smacked them down financially.
@Edward Pheil
What? Are you suggesting that labs destructively compete with each other for funding and facilities? I’d be shocked, shocked to learn of such activities being pursued by the labs at a time when the [initial] budget request for Nuclear Energy from DOE has increased by -$260 M, a -26% bump.
Heck, NO, I am not suggesting they do it, but they shoukd stop it! I am suggesting they ARE destructively doing it on their own!
Nice job on the article. My first job out of school I worked as a nuclear engineer at Hanford in the late 80s and early 90s. One of my primary jobs was supporting fuel experiments in FFTF. It was definitely a world class facility! Given the recent restart of TREAT at INL, perhaps breathing life back into FFTF at DOE is possible. Wouldn’t that be awesome! I’d love to see a revival of LMR technology. If you can think of any I can help or get involved, let me know!!!!
See previous comment about informing the Washington congressional delegation.
I wish a fraction of the money spent on sending millionaires on suborbital joy rides could be applied to nuclear power R&D.
“To a reasonable level of provision, the process in a thermal reactor produces about as much energy from mined uranium as if the system only consumed U-235.”
Should “provision” have been “precision” in that sentence?
Nice informative article. It would be nice if our leadership and facility operators would act rationally for the good of the country rather than trying to maximize their fiefdoms.
Drive by FFTF everyday on my way to work and work with a couple EOs that used to run it. Would love to see that f*ucker fired up again. Why it won’t is criminal.
Some believe the facility was permanently disabled with a series of decisions and actions taken during the Clinton and Bush Administrations. Fortunately, that belief is based more on mythology than reality.
Sure it was not permanently disabled but was this facility shutdown just as the IFR was shutdown by the way of fear mongering/propaganda in the early 90’s for political reasons? The more I learn about nuclear energy the more I trust it’s use as a future source. Now how do we convince the masses?
@Dan
Reasonable question. As far as I can tell from reading as much of the history as I can find, including archived news articles, Congressional testimony, etc. the demise of the FFTF was mainly driven by perception that it had an insufficient mission and perceived need.
It was built to support an expansionary breeder reactor program. There was a well established recognition that embarking on a new type of nuclear reactor program would need extensive testing of fuel forms and materials throughout the life of the program, just like we’ve put the ATR to good use for more than 5 decades of LWR evolution and development.
Once the last breeder reactor program, the IFR had been killed off by political forces bent on ensuring an expanding market for natural gas, those political forces turned to the FFTF and made the case that it was no longer needed.
We convince the public of the incredible potential value of nuclear energy as an abundant emission free power source, an effort that will take plenty of skills and a variety of tactics with a long term strategy.
It can be done, but people who accept the technology have to be willing to invest time and treasure to do their part to overcome decades worth of focused opposition, often supported by people with strong financial ties to hydrocarbons with no desire to attempt to compete against an unshackled atomic energy industry.