Tour of NuScale control room and test facility

Disclosure: I have a small contract to provide NuScale with advice and energy market information. That work represents less than 5% of my income for 2014.

On October 20, 2014, I had the opportunity to visit NuScale’s facilities in Corvallis, OR. Though the company now has offices in three cities, Corvallis, the home of Oregon State University, is the place where the NuScale Power Module has been conceived and refined.

Unlike the other participants in the race to develop small modular reactors that can be licensed and sold in the United States, NuScale is a focused start-up company with many similarities to other high tech start-ups. It grew out of a university research project, has been through several rounds of capital raising, maintains a working relationship with the university that initially nurtured its development, and has located its offices in an available vacant building with a motivated landlord.

Front door of building housing NuScale's Corvallis design office

Front door of building housing NuScale’s Corvallis design office

In NuScale’s case, the available building was in excellent, move-in condition. It is part of a multi-building campus owned by HP that was once a bustling center for designing and manufacturing personal printers and their associated ink cartridges. In 2011, NuScale was one of the first tenants to occupy space in its building, which was already set up as an engineering design office. NuScale’s occupancy was part of a local reuse program. Desks, cubicle dividers, and even chairs were ready and waiting for the new creative occupants.

My first stop was in Jose Reyes’s office for a quick update. Jose is NuScale’s Chief Technical Officer and one of the company’s cofounders. I’ve known him for several years, our first official interaction was when he and Paul Lorenzini were my guests on Atomic Show #100 in August 2008.

Reyes began by telling me that NuScale’s head count is up to 380, including contractors serving as staff augments. About 200 of those work in Corvallis. As a fully owned subsidiary of Fluor, NuScale receives ongoing investments through the budgeting process. There are numerous positions still open; the company has recently been adding several people every week.

So far, the total project spend has been about $230 million. NuScale and the US Department of Energy recently finalized their cost-sharing agreement through which the DOE will provide grants of up to $217 million over a five year period to assist in defraying the additional costs that are imposed on the leader of any new nuclear technology development, subject to annual appropriations.

In the US, the first-of-a-kind leader must pay the Nuclear Regulatory Commission costs associated with reviewing and producing positions on new concepts. All followers get to use those established positions without incurring the $279 per professional staff hour fees or having to pay its own people to devise the concepts and provide the technical justification that results in NRC approval. In the case of NuScale, some of the ground breaking concepts include natural circulation and control room designs that enable different staffing concepts than used in existing reactors.

NuScale’s testing and licensing program are moving along. During the next year, Reyes expects that his team will be submitting a number of topical reports to the Nuclear Regulatory Commission. In NRC lingo, there is a significant difference between a topical report and a technical report. Companies submit technical reports as a way to keep the NRC informed about various aspects of a design, but the NRC is under no obligation to comment or respond.

In contrast, the NRC reviews and comments on topical reports. If appropriate, the NRC may formally accept a topical report as suitable to be used in a licensing and provide limiting conditions under which the report may be used. The topical report process will provide the company with better understanding of the NRC’s position on certain key issues.

According to Reyes and the schedule that has been submitted to the NRC, NuScale should be ready to submit a high quality application before the end of 2016. Since the company first notified the NRC that it intended to submit an application for a design certification in 2008, it should be apparent that working through the licensing process in the United States is no job for people with an impatient, “git ‘er done” mentality. It should also be apparent that the current situation must be improved.

NuScale has begun developing its supplier base. As a Fluor subsidiary, it has access to a large, world-wide supplier network, but some of the components of the NuScale Power Module will require expansion of that supplier base. Reyes indicated that the company believes there is sufficient capacity for key items for building one or two power stations in a reasonable period of time, but additional investments in facilities will be required to enable a higher throughput.

The company has hosted a couple of supplier days already; most of those have taken place in the northwest US, which is where NuScale intends to concentrate its deployment efforts.

NuScale control roomThe next stop on the tour was a visit to the control room prototype. It is in a large room with the same footprint as will be available in the actual power stations. The ceiling is a bit lower; the room is limited by a ceiling height available in a commercial office building.

The main control panels are arranged in a horseshoe configuration with thirteen individual desks and screen groups. There is one desk/screen group for each unit and a larger one to operate and monitor shared systems like circulating water and the large pool in which all of the modular containments will reside.

One of the primary goals of the facility is to develop the concept of operations and human factors program to support the rule exemption request that the company will need to submit. The current rule that specifies plant operations has no provisions for more than 3 units on a site or more than 2 units controlled from a single control room. NuScale is not yet certain how many operators it will need, but its initial position is to attempt to reduce the work load to the point where it is manageable by an operating crew that is the same size as the one used at existing nuclear facilities.

Because I have not signed any non-disclosure agreements with the company, the screens NuScale showed me during my visit were generic, but they provided a good understanding for the direction that the company is taking to streamline operations, automate functions where desirable and provide clear, understandable indications.

NuScale DisplaysMy tour guide and I had a good discussion about NuScale’s plan to provide intelligent alarms that do not overwhelm operators with unnecessary noise and distraction. As an example, he mentioned that some control rooms provide dozens of alarms during a typical turbine trip even though all of them are reporting conditions that are expected to happen whenever the turbine goes off-line.

Several experienced senior reactor operators have joined the company’s team and are working with the system designers to achieve a complete systems approach that takes into account indications, alarms, layout, controls and human skills.

The final tour stop required a short drive to the OSU campus, where NuScale’s test loop is hosted. Reyes began that part of the tour with some background information about the testing and scaling techniques he and his team learned as contractors for the Westinghouse AP600 and AP1000 passive cooling testing program. He described the program schedule and the way that they used temporary trailers, university students and contractors to achieve a six-day, 24-hour per day testing regime to produce valid results in a cost effective manner.

NuScale poolThen I had the good timing to be one of the first people to tour an in-progress modification of the NuScale testing facility, which was undergoing a major revision as the result of recent system redesigns. Having a good familiarity with mPower’s Integral System Test (IST) facility, I was surprised at the substantially more compact test loop that Reyes and his team had designed and built. The facility was inside an existing laboratory building that is about 30 feet high and has a tall garage door similar to what you might see at a fire station.

Reyes described the effort involved in producing reliable scaling computations and explained that there are two different paths that can be taken to build system test facilities. One is to use relatively simple, well-known calculations and produce a full height, reduced diameter facility. The other path involves more work up front and some specialized computational techniques, but results in the ability to reduce scale in other dimensions while still providing valid results predicting full scale system performance.

The full height path is much more expensive in terms of component construction and installation; it often results in a special purpose building. On the plus side, the one-of-a-kind facility will create some temporary engineering, architecture, construction and manufacturing jobs.

As a start-up led by a professor at a major university, NuScale could obtain skilled engineering services for the up-front calculations relatively cheaply. It did not have the capital to invest in manufacturing and housing a full height test loop. As a focused start up, the company had no established divisions vying to contribute their particular core competencies to a shiny new project that had top-level support from a large, long-established corporation.

They also did not have local civic boosters interested in creating new jobs thinking of ways to add work or offering to spend economic development money for facilities targeted at attracting additional businesses.

Jose Rod Test FacilityNuScale’s new test loop will be ready for operations in early 2015. It still needs a few finishing touches along with the installation of lagging (insulation) before it can begin operations. However, the trailer that will house the control room for the facility has arrived, most of the piping connections have been made, and instrumentation installation is well under way. The revised test loop will provide NQA-1 quality data from a data acquisition and control system taking inputs from more than 500 instruments.

After an informative visit, I headed for the next stop on my whirlwind visit to the Pacific Northwest. That leg involved a journey on one of the most scenic interstates in America, especially for someone who is obsessed with ultra-low emission energy production systems. More to follow.

UAMPS stepping forward to serve customers

The established nuclear energy industry has taken a wait-and-see approach to the idea of developing and deploying smaller, simpler fission power stations that can take advantage of the economy of series production. The industry’s trade organization, the Nuclear Energy Institute, has expressed cautious optimism and has engaged in a moderate effort to identify regulatory obstacles […]

Read more »

Prospective customers lining up at NuScale

Each orange circle represents a potential NuScale power plant

A few days ago, Dan Yurman at Neutron Bytes published a blog post that is now titled Flash: NuScale executive says firm may build SMRs at Idaho lab. It was a follow-up to an earlier post in which Dan speculated about the Idaho National Lab’s potential as a good site for a new nuclear power […]

Read more »

The Canadians are coming

Hugh MacDiarmid, the Chairman of the Board for Terrestrial Energy, Inc., gave a talk to the Economic Club of Canada on September 24, 2014. That talk included a brief description of TEI’s integral molten salt reactor technology, but most of the talk was visionary in nature and aimed at exciting his Canadian audience about the […]

Read more »

Terrestrial Energy – Molten Salt Reactor Designed to Be Commercial Success

There is a growing roster of innovative organizations populated by people who recognize that nuclear technology is still in its infancy. Terrestrial Energy is one of the most promising of those organization because of its combination of problem solving technology, visionary leadership, and strong focus on meeting commercial needs. Nearly all of the commercial nuclear […]

Read more »

HTR-PM – Nuclear-heated gas producing superheated steam

The first HTR-PM (High Temperature Reactor – Pebble Module), one of the more intriguing nuclear plant designs, is currently under construction on the coast of the Shidao Bay near Weihai, China. This system uses evolutionary engineering design principles that give it a high probability of success, assuming that the developers and financial supporters maintain their […]

Read more »

Fission is an elegant way to heat a gas

What if it was possible to combine the low capital cost, reliability, and responsive operations of simple cycle combustion gas turbines with the low fuel cost and zero-emission capability of an actinide (uranium, thorium, or plutonium) fuel source? Machines like that could disrupt a few business models while giving the world’s economy a powerful new […]

Read more »

NuScale and DOE finalize the agreement announced six months ago

On December 12, 2013, the US Department of Energy announced that it had selected NuScale as the winner of a cost share program to develop small modular reactors. This morning, NuScale distributed the following press release announcing that the agreement with the DOE had been finalized for up to $217M over the next five years. […]

Read more »

SMRs – Why Not Now? Then When?

I have shamelessly borrowed the title of one of the talks given during the first day of the Nuclear Energy Insider 4th Annual Small Modular Reactor (SMR) Conference as being representative of both the rest of the agenda and the conversations that I had in the hallways during the breaks. For the past five years, […]

Read more »

SUNY Maritime Student Advocates Commercial Nuclear Ship Propulsion

Stimulated by early atomic optimism, naval successes and Eisenhower’s Atoms for Peace initiative, four nations built ocean going ships with nuclear propulsion plants. The US built the NS Savannah, Germany built the Otto Hahn, Japan built the Mutsu, and Russia built a series of nuclear powered icebreakers. For reasons that are beyond the scope of […]

Read more »

NEI Small Reactor Forum Report – Part 2

The Nuclear Energy Institute (NEI) hosted its biannual Small Reactor Forum on February 25, 2014. The agenda for the one day event included six well-organized sessions with presentations from three small reactor vendors, the industry trade group, the regulatory agency, and several outside observers with a significant interest in the technology from a variety of […]

Read more »

NEI Small Reactor Forum Report – Part 1

The Nuclear Energy Institute (NEI) hosted its biannual Small Reactor Forum on February 25, 2014. The agenda for the one day event included six well-organized sessions with presentations from three small reactor vendors, the industry trade group, the regulatory agency, and several outside observers with a significant interest in the technology from a variety of […]

Read more »