No obstacles prevent China from rapidly building floating nuclear power plants

1968 photo of the Sturgis, the first nuclear power barge, in the Panama Canal. It provided electricity to operate the locks from 1968-1975

1968 photo of the Sturgis, the first nuclear power barge, in the Panama Canal. It provided electricity to operate the locks from 1968-1975

Credible entities in China have begun lining up the supply chains required to produce reliable electrical power from barge mounted nuclear fission power plants. There are no technical, industrial, or regulatory hurdles that prevents the first of those machines from being in service by 2020.

China has a pressing need for the electricity those movable power plants will be able to produce; it is building artificial islands that are a long way from power lines, pipelines, and developed fuel handling port facilities. Nuclear plants, unlike all other options, can produce power 24 hours per day using fuel that can be airlifted at intervals that might be measured in years.

Many Chinese political leaders are competent engineers and scientists. They recognize that weak, unreliable energy sources like wind and sun are not capable of providing the power required to operate dredges, early warning radar systems, concrete plants, airports, and the electrical power needs for a growing population that will inhabit their brand new territory.

Russia, which has talked about building floating nuclear power plants for decades and has had a construction program underway since 2000 has yet to make any operational power plant deliveries.

China, however, has a history of follow through and task completion. They build what they say they are going to build. They manufacture some excellent products in a wide range of industries — including electronics, locomotives, ships, power plants, computers, and solar panels — that are exported all over the world.

In contrast, Russia’s export successes have been limited to oil, natural gas, vodka, military hardware and a few long-delayed nuclear power plants.

Unlike the United States, which has withheld its world-leading floating nuclear propulsion plant expertise from the commercial market for more than 60 years, China seems to understand that technology developed to propel ships can be put to valuable use in many other applications. Turbines are turbines whether they are on ships or on land. Power plants that include steam propulsion turbines can be readily adapted to drive steam turbines attached to electrical generators.

Since ship nuclear propulsion systems require robust foundations and the capability to withstand the stressful conditions of stormy weather and the possibility of nearby explosions, they are well-suited to being installed in power barges that can be moored in ports that may be in the path of typhoons. An old friend of mine who is a retired Dutch Navy engineering officer often told me that in the history of power plants, there are a number of examples of machines that made a successful transition from seaborne power to land based power, but there were few, if any, that had moved from land to sea.

In my worldview, Chinese floating nuclear power plants are not a strategic threat or safety concern. The infrastructure that they will power is another story that I won’t discuss here.

Market opportunity

China’s manufactured islands in the South China Sea are an ideal “early adopter” customer for floating nuclear power plants. However, they are not the only or even the largest market for the machines that may begin to float out of their shipyards at an increasing rate beginning in 2020.

Those transportable plants with their lightweight supply lines will represent an economically competitive source of electricity and clean water that may find a large and lucrative market once the builders begin series production. I expect that the suppliers will engage in the relentless production cost and sales price improvements that Chinese manufacturers have been able to achieve in so many other industrial enterprises.

The planning for the decision to build power barges to supply artificial South China Sea islands became publicly known at the end of 2015 with the announcement of the National Marine Nuclear Power Demonstration Project. In January of 2016, China Shipbuilding Industry Corporation and China Guangdong Nuclear signed a strategic cooperation agreement to develop off shore nuclear installations. Though it is a bit difficult to fully understand the Google translate version of the Chinese language story, it also appears that CNOOC (China National Offshore Oil Company) is cooperating by supplying its experience in offshore construction.

CNOOC is also interested in small nuclear plants to provide electricity to its power-hungry, distant offshore drilling rigs. It may sound a bit like carrying coal to Newcastle, but oil wells are generally powered by diesel engines that require refined petroleum; they cannot burn the crude oil that they are extracting, though some are able to beneficially use the natural gas that often accompanies the oil. When rigs are not too far off shore, it’s often cost effective to power them from the onshore power grid. Distant rigs, however, are almost ideally suited to be powered by atomic generators.

When added to the coastal cities of developing countries, the island nations that continue to rely on diesel generators, and the large number of oil rigs with diesel generators, the market for floating nuclear plants is potentially in the hundreds to thousands of units. As things stand today; China might be able to rapidly establish a dominant market position that will be difficult to overcome.

Capitalizing on attention

A story on eworldship.com appeared on Wednesday, April 20 describing the partnerships that have been established and describing the initial market target of the artificial islands in the South China Sea.

That story instigated a flurry of stories in a variety of media outlets, including Global Times, Reuters, Economic Times (India), Foreign Policy, Chicago Tribune, and New York Times.

My hope is that the development stimulates a prosperity and stability-enhancing competitive race to build ever more capable machines that can provide reliable power to places that have always been hampered by the difficulty of supplying fuel for dirty, polluting generators and by the lack of access to abundant fresh water.

My concern is that the development will be seen by some as an action that requires aggressive efforts to slow progress and halt development.

Sturgis in 2014. Powered Panama Canal pumps 1968-1975.  Reactor fuel long ago removed.

Sturgis in 2014. Powered Panama Canal pumps 1968-1975.
Reactor fuel long ago removed.

That shouldn’t be America’s response; we have competitive capabilities in this arena.

After all, we were the first nation to deploy a floating nuclear plant to provide power to an important piece of our global infrastructure. Unfortunately, we were also the first to abandon the technology after making budgetary decisions that ensured Sturgis was an expensive, one-of-a-kind orphan.

We should seize the flurry of attention being paid to maritime nuclear plants as an opportunity for generating excitement about atomic energy development and a growing understanding of the benefits provided by extremely compact fuel sources.

The US Navy, my former employer, has been designing, building and maintaining superior nuclear propulsion plants and training suppliers and operators for more than two generations. With the notable exception of the 1950s vintage Shippingport project, the nuclear Navy has been more than reluctant to share its technological expertise and skills in human resource development with anyone else.

Shippingport was a qualified success; it enabled a commercial nuclear industry that grew rapidly for 20 years and produced machines that have supplied a large, consistent supply of clean electrical power for the past four decades. Unfortunately, that first nuclear power plant construction industry had growing pains and ran into a number of obstacles. By the mid 1980s it had faded to a mere shadow with no new construction starts during a 35 year period.

Now is the right time for another effort to commercialize the investment that we’ve made in maritime nuclear energy. Maybe this time, it will point the way to an industry that doesn’t stop growing until all customers who can use the power are economically served.

I’m positive that my suggestion to selectively share more capability will not be well-received in certain offices in the Navy Yard — I’ve checked within the past week. I can only hope that my old friends there will think deeply and remember what we were taught long ago. It’s no good for the Navy to operate beautiful, esthetically amazing nuclear power plants if the ships they propel go down.

Extending that idea a bit, it’s not a sound national strategy for the United States Navy to so carefully protect useful but not militarily unique nuclear knowledge to the point of allowing the country that paid for that knowledge to experience a preventable economic decline.

Atomic Show #232 – Against the Tide by RADM Dave Oliver

Though it has been more than 30 years since Admiral Rickover finally retired from his position as the head of Naval Reactors, his legacy lives on in the people he directly trained and in the people that those initial Navy nukes trained and led. A new book titled Against the Tide: Rickover’s Leadership Principles and […]

Read more »

Nuclear-Powered Trans-Ocean Shipping – 3rd place in New York Advanced Energy contest

I received an update from Benjamin Haas, the SUNY Maritime student who has been working on nuclear powered ship designs from a complete systems perspective for the past three semesters. He and his team have not just focused on the technical aspects of designing a power plant and a ship that could take full advantage […]

Read more »

NS Savannah tours May 18, 2014

Press Release Historic Ship N.S. Savannah Open for Tours May 18, 2014 in Observance of Maritime Day N.S. Savannah Association, Inc. 4/17/2014 The unique, nuclear powered ship N.S. Savannah will be opened for tours at her pier in Baltimore, Md. on Sunday, May 18, 2014 as a part of the annual commemoration of Maritime Day. […]

Read more »

Trip report from visit to NS Savannah

About three weeks ago, I wrote an article about commercial nuclear ship propulsion. That post introduced Benjamin Haas, a student at SUNY Maritime, who has been leading a design team that is developing the conceptual design for a nuclear powered shipping system. Ben’s team is not just focused on the ship itself, but on all […]

Read more »

SUNY Maritime Student Advocates Commercial Nuclear Ship Propulsion

Stimulated by early atomic optimism, naval successes and Eisenhower’s Atoms for Peace initiative, four nations built ocean going ships with nuclear propulsion plants. The US built the NS Savannah, Germany built the Otto Hahn, Japan built the Mutsu, and Russia built a series of nuclear powered icebreakers. For reasons that are beyond the scope of […]

Read more »

Antarctic misadventure failed to plan for resilience

I’ve been pondering the misadventures of the Akademik Shokalskiy for several days, thinking about the difference in result between an excursion planned on the cheap by people who depend on things going smoothy and a voyage planned by people who included contingencies and had access to more capable technology. In the summer of 1994, the […]

Read more »

Icebreaker saved by fossil fuels. Nuclear might have been better

Just before Christmas 2013, a diesel-powered, ice-capable Russian research vessel named MV Akademik Shokalskiy, which was carrying scientists studying climate change, got stuck in the Antarctic ice. The scientists on the ship were not in any immediate risk or suffering any hardship conditions; they had plenty of fuel and supplies. The scientists have been evacuated […]

Read more »

Grand Opening of the Apprentice School at Newport News Shipbuilding

Yesterday, on an unusually warm December day, I attended the grand opening of the new Apprentice School building in downtown Newport News, Virginia. It was an event that made me proud to be an American, proud to be a Virginian and proud to be a veteran of the US Navy. I was a member of […]

Read more »

Root cause of Naval Reactors policy of strict secrecy about nuclear propulsion plant design

As a Navy nuke, I was carefully taught to believe that everything we learned about atomic energy had to be strictly protected from release to anyone who was not “cleared”, especially anyone who was not a US citizen. I started to question that policy after I completed my tour as the Engineer Officer on the […]

Read more »

Naval Reactors should be empowered to show the way – again

President Obama should task John Richardson with a mission similar to the one that President Dwight Eisenhower gave Hyman G. Rickover. Richardson is the current leader of Naval Reactors (NR), the organization that Rickover built. If directed, NR could begin a new assignment to show others how to manufacture complete nuclear fission power systems starting […]

Read more »

Why did gullible reporters promote a student paper about nuclear facility security?

There was a flurry of attention in the press last week when a political science professor held a press conference to tell the world that one of his students had written a paper concluding that all of the nuclear power plants in the United States were vulnerable to a terrorist attack. For unpublished reasons, a […]

Read more »